
 

  
Abstract—A novel algorithm for automated computer-

aided formulation of the state dynamics equation for lumped 
linear time-invariant electric circuits is presented. The 
algorithm is explained by an illustrative example. An original 
software package, written in Mathematica, is proposed for 
implementation of the algorithm. The new algorithm and the 
corresponding software implementation are intended for 
practitioners, researchers, educators and students, who 
design, explore, or evaluate electric circuits. 
 

Index Terms—computer algebra system, electric circuit, 
state space analysis, symbolic analysis 
 

I. INTRODUCTION 
In any electric circuit characterization one should seek 

the minimum mathematical description that leads to 
understanding and an intelligent use of the device. For 
general circuit studies the state variable qualifies 
admirably; the state-variable characterization provides the 
full complement of required information about the circuit 
in question in a most convenient form. The simple 
qualitative measures of circuit behavior, passivity, time-
invariance, linearity, reciprocity, and stability are often 
easily discussed in terms of the state-variable 
characterization. [1] 

Roughly speaking, the state of a system may be 
considered to be the minimal amount of information 
necessary at any time to characterize completely any 
possible future behavior of the system. For present 
purposes, the states become the set of independent initial 
conditions (or a nonsingular linear transformation of them) 
which the circuit can support. Thus, the states (initial 
conditions at time 0t ) plus the excitation (from time 0t  
onward) completely determine the response (from time 0t  
onward) for circuits that can be characterized by state 
variables. [1] 

State-variable analysis or state-space analysis, as it is 
sometimes called, is a matrix-based approach that is used 
for analysis of circuits containing time-varying elements 
as well as nonlinear elements. The state of a circuit is 
defined as a set of a minimum number of variables 
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associated with the circuit; knowledge of these variables 
along with the knowledge of the input will enable the 
prediction of the currents and voltages in all circuit 
elements at any future time. Only capacitors and inductors 
are capable of storing energy in a circuit, and so only the 
variables associated with them are able to influence the 
future condition of the circuit. The voltages across the 
capacitors and the currents through the inductors may 
serve as state variables. [2] 

There are many advantages in using the state equations 
[3]: (a) there is an enormous amount of mathematical 
knowledge for solving such equations while the equations 
by themselves can be derived from formal topological 
properties of the circuit, using the matrix approach, (b) it 
can be easily and naturally extended to nonlinear and 
time-varying or switched circuits and is, in fact, the 
approach most often used in characterizing such circuits, 
(c) a simple systematic method for writing such equations 
can be formulated by using the graph theory, and (d) it 
may be easily programmed for a numerical and symbolic 
solution with appropriate computer software. 

The concept of state variables, or just state, satisfies two 
basic conditions of circuit analysis [3]:  

1) If at any time, say 0t , the state is known (which is 
the initial condition or initial state), then the state 
equations uniquely determine the state at any time 0tt >  
for any given input. In other words, given the state of the 
circuit at time 0t  and all the inputs, the behavior of the 
circuit is completely determined for all 0tt > . 

2) The state and the input uniquely determine the value 
of the remaining circuit variables. 

The initial conditions, or initial state of the circuit, are 
actually the initial values of the capacitor voltages and 
inductor currents, which usually can be independently 
specified in the circuit, i.e. their values just after 0t  are 
determined by their values just before 0t . 

All circuits to be considered here are to be lumped, 
linear, time-invariant, and finite so that only finite 
dimensional state spaces need be discussed. It is without 
loss of generality that the general circuit in question is 
assumed to be connected. 

This paper presents a new algorithm, and the 
corresponding software implementation in Mathematica 
[4,5], for automated computer-aided formulation of the 
first-order differential state-space equations referred to as 
the circuit dynamics equation. 
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II. USE OF COMPUTER ALGEBRA SYSTEMS FOR 
FORMULATION OF THE STATE-SPACE EQUATIONS  

Computers were initially developed to expedite 
numerical calculations. A newer, and in the long run, very 
fruitful field is the manipulation of symbolic expressions. 
When these symbolic expressions represent mathematical 
entities, this field is generally called computer algebra. [6] 

The current symbolic computation environments are 
extremely powerful in doing symbolic and mixed 
symbolic-numeric mathematics for technical computing. 
They can be used for the efficient and effective search for 
optimal solutions. [7,8] 

Computer algebra systems can be used to formulate 
general circuit equations and to rearrange them to the 
state-space equations. 

The essence of the proposed symbolic algorithm for 
formulation the state-space equations is based on the 
modified nodal analysis (MNA) [9,10]. The MNA 
equations are extended by introducing one variable and 
one equation for each dynamic element. 

Consider dynamic elements with standard reference 
directions as shown in Fig. 1. For each capacitor of a 
capacitance C , the element equation is  

t
vCi C

C d
d

=  (1) 

and can be written in terms of new variables as 

CiDC =vC , 
t

vD C
d

d
vC = , Cmk vvv =− , (2) 

where vCD .is the new capacitor variable, kv  is the 
voltage between node k  and the reference node, and mv  
is the voltage between node m  and the reference node. 

Similarly, for each inductor of an inductance L , the 
element equation is 

t
iLv L

L d
d

=  (3) 

and can be written in terms of new variables as 

LvDL =iL , 
t

iD L
d

d
iL = , Lmk vvv =− , (4) 

where iLD .is the new inductor variable. 
 

L C

vL vC

iL iC

k km m
 

Fig1 1. Dynamic elements with standard reference directions. 
 
In nodal analysis, Kirchhoff ’s current law (KCL) is 

used to write equations at each node in terms of the nodal 
voltages and element values. The equations are written for 
one node at a time, and the node voltages are unknown 
variables. In computer aided design (CAD), it is useful to 
consider one element at a time and to develop the matrix 
equations on this basis. [11] 

Assume that the nodes in a circuit are labeled by 
consecutive integers from 1 to n  such that there are the n  
nodal voltages in the circuit. The reference node is usually 
labeled zero. 

In the proposed algorithm the capacitor will affect the 
KCL equations at nodes k  and m  in the following way: 

 
KCL at node k : … ++ vCDC  … = 0 (5) 
KCL at node m : … +− vCDC  … = 0 (6) 

 
and the ellipses (…) denote contributions from other 
elements connected to that node. This increases the 
number of unknown variables by one (by vCD ). Hence, 
another equation is needed so that the number of 
unknowns and the number of equations are the same and 
can be solved. The additional equation is the following: 

 
Cmk vvv =−  (7) 

 
and the capacitor voltage Cv  is treated as a known 
quantity. 

Similarly, the inductor will affect the KCL equations as 
follows: 

 
KCL at node k : … ++ Li  … = 0 (8) 
KCL at node m : … +− Li  … = 0 (9) 

 
and the inductor current Li  is treated as a known quantity. 
The additional equation is the following: 

 
0iL =−− DLvv mk  (10) 

 
and it contains the new variable ( iLD ). If coupled 
inductors exist, equation (10) should be updated 
accordingly. 

Consider a general circuit of 1+n  nodes, Cn  
capacitors and Ln  inductors, that is, LCD nnn +=  
dynamic elements. The MNA equations will have 
additional Dn  variables and additional Dn  equations. 
Treating the capacitor voltages and inductor currents as 
known quantities, the MNA equations can be solved and 
the vCD , iLD  variables can be obtained as linear 
combinations of the Cv , Li  quantities and excitations 
(inputs). 

The above algorithm is implemented in Mathematica as 
a SSALEC program (State-space Symbolic Analysis of 
Electric Circuits), which complements the SALECAS 
software reported in [12]. 

SSALEC receives a netlist based description of a circuit 
and formulates the state-space differential equations. In 
addition, it returns the solution for MNA variables (node 
voltages and some currents). 

III. EXAMPLE OF SSALEC OPERATION 
Consider an RLC circuit shown in Fig. 2 [13, p347]. 
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Fig. 2. Example RLC circuit. 
 
Netlist for the example RLC circuit follows: 
 

(* RLC.cir  Example RLC Circuit *) 
NumberOfNodes = 3 
component[1] = {"C", "C1", 1, 3, C1} 
component[2] = {"C", "C2", 2, 0, C2} 
component[3] = {"L", "L3", 2, 3, L3} 
component[4] = {"R", "R4", 2, 1, R4} 
component[5] = {"V", "vg5", 1, 0, vg5} 
component[6] = {"I", "ig6", 0, 3, ig6} 
NumberOfComponents = 6 
 

The corresponding SSALEC operation and the symbolic 
analysis results are shown in Fig. 3. Note that there are 
three differential state-space equations. 

 
 

 
 
Fig. 3. SSALEC symbolic formulation of the state-space equations for the example RLC circuit. 
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The results of symbolic analysis performed by SSALEC 
can be written in the conventional matrix form as follows: 
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uBxAx
+=

td
d  (15) 

 
uDxCy +=  (16) 

 

The 
td

dx  equation (15) is called the state dynamics 

equation, and the y  equation (16) is called the output 
equation. A , B , C , and D  are appropriately 
dimensioned coefficient matrices. 

The state variables are commonly expressed as a vector 
x . SSALEC arranges state variables according to the 
ordering of dynamic elements (capacitors and inductors) 
in the netlist. 

The input source variables are expressed as a vector u . 
The non-state-variables are expressed as a vector y . 
This set of equations, where the derivative of state 

variables is expressed as a linear combination of state 
variables and forcing functions, is said to be in normal 
form: 
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IV. CONCLUSION 
This paper has reviewed the very basic concepts of the 

state-variable characterization of lumped linear electric 
circuits. The state-space equations have been formulated 
by use of a computer algebra system. A new algorithm for 
automated computer-aided symbolic computation of the 
state dynamics equation has been proposed. A 
Mathematica program SSALEC has been presented as a 
software implementation of the proposed algorithm. The 
SSALEC operation has been demonstrated step-by-step by 
an illustrative example. 

The value of symbolic state-space analysis could be 
beneficial in both industry and academia. In industry it 
could be used as an aid in the design of systems and 
circuits. In academic institutions it could be found useful 
as an instructional aid. 

The future research efforts are directed towards a more 
general algorithm for the formulation of state-space 
equations with the algebraic degeneration – taking into 
account capacitor loops and inductor cut-sets. 
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